## Stoichiometry

$$
1 \mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow 1 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

1 mole $=6.02 \times 10^{23}$ of anything

Avogadro's number

## Stoichiometry

How many grams of mercury are formed from 2.16 g HgO ?
$2 \mathrm{HgO}_{(\mathrm{s})} \longrightarrow 2 \mathrm{Hg}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}$


## Stoichiometry

How many grams of mercury are formed from 2.16 g $\mathrm{HgO} ? \quad 2 \mathrm{HgO}_{(\mathrm{s})} \longrightarrow 2 \mathrm{Hg}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}$
$2.16 \mathrm{~g} \mathrm{HgO} \times 1 \mathrm{~mole} / 216.6 \mathrm{~g}=0.01$ moles HgO
$=0.01$ moles Hg
0.01 moles $\times 200.6$
$=2.00 \mathrm{~g} \mathrm{Hg}$

## Stoichiometry

How many grams of mercury are formed from 2.16 g $\mathrm{HgO} ? \quad 2 \mathrm{HgO}_{(\mathrm{s})} \longrightarrow 2 \mathrm{Hg}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}$ $2.16 \mathrm{~g} \quad 2.00 \mathrm{~g} \quad 0.16 \mathrm{~g}$ 2 moles HgO
$1 \mathrm{~mole}_{2} \times 0.01$ moles $=$

0.005 moles $\mathrm{O}_{2} \times 32$
$=0.16 \mathrm{~g} \mathrm{O}_{2}$

## Moles in Reactions

* How many grams of $\mathrm{Cl}_{2}$ are made from the decomposition of 100 g NaCl ?
$2 \mathrm{NaCl} \longrightarrow-\mathrm{Na}^{-}+\mathrm{Cl}_{2}$



## Moles in Reactions

* How many grams of $\mathrm{Cl}_{2}$ are made from the decomposition of 100 g NaCl ?
$2 \mathrm{NaCl} \longrightarrow 2 \mathrm{Na}+\mathrm{Cl}_{2}$

100 g NaCl x 1 mole/ $58.45 \mathrm{~g}=1.71$ moles

1.71 moles NaClx 1 mole $\mathrm{Cl}_{2}=0.85$ moles $\mathrm{Cl}_{2}$
$\overline{2 \text { moles } \mathrm{NaCl}}$
0.85 moles $\mathrm{Cl}_{2} \times 70.9 \mathrm{~g} /$ mole $=60.3 \mathrm{~g} \mathrm{C}_{2}$

## Stoichiometry

* How many grams of sodium azide are needed to fill a car's air bag with $75 \mathrm{~g} \mathrm{~N}_{2}$ ?
$2 \mathrm{NaN}_{3} \longrightarrow 3 \mathrm{~N}_{2}+2 \mathrm{Na}$



## Stoichiometry

* How many grams of sodium azide are needed to fill a car's air bag with $75 \mathrm{~g} \mathrm{~N}_{2}$ ?
$2 \mathrm{NaN}_{3} \rightarrow-\mathrm{C} \mathrm{N}_{2}+2 \mathrm{Na}$
$75 \mathrm{~g} \mathrm{~N}_{2} \times 1$ mole $/ 28 \mathrm{~g}=2.68$ moles
2.68 moles $\mathrm{N}_{2} \times 2$ moles $\mathrm{NaN}_{3}=1.79 \mathrm{mdes} \mathrm{NaN}$



## Stoichiometry

* Ammonium nitrate can explode at high temperatures:

$$
\mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

What is the total mass of gases produced when 100 g ammonium nitrate explodes?


## Stoichiometry

* Ammonium nitrate can explode at high temperatures:

$$
2 \mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

What is the total mass of gases produced when 100 g ammonium nitrate explodes?


## Stoichiometry

* Ammonium nitrate can explode at high temperatures:
$2 \mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(g)}$
What is the total mass of gases produced when 100 g ammonium nitrate explodes?



## 100 gx 1 mole/ $80 \mathrm{~g}=1.25$ moles $\mathrm{NH}_{4} \mathrm{NO}_{3}$

1.25 moles $\mathrm{NH}_{4} \mathrm{NO}_{3} \times 2$ moles $\mathrm{N}_{2} / 2$ moles $\mathrm{NH}_{4} \mathrm{NO}_{3}$ 1.25 moles $\mathrm{N}_{2}$
1.25 moles $\mathrm{NH}_{4} \mathrm{NO}_{3} \times 1$ mole $\mathrm{O}_{2} / 2$ moles $\mathrm{NH}_{4} \mathrm{NO}_{3}$ 0.625 moles $\mathrm{O}_{2}$
1.25 moles $\mathrm{NH}_{4} \mathrm{NO}_{3} \times 4$ moles $\mathrm{H}_{2} \mathrm{O} / 2$ moles $\mathrm{NH}_{4} \mathrm{NO}_{3}$
2.5 moles $\mathrm{H}_{2} \mathrm{O}$

## Stoichiometry

* Ammonium nitrate can explode at high temperatures:
$2 \mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
What is the total mass of gases produced when 100 g ammonium
nitrate explodes 1.25 moles $\mathbf{N}_{2} \times 28 \mathrm{~g} /$ mole $=35 \mathrm{~g} \mathrm{~N}_{2}$

0.625 moles $\mathrm{O}_{2} \times 32 \mathrm{~g} / \mathrm{mole}=20 \mathrm{~g} \mathrm{O}_{2}$
2.5 moles $\mathrm{H}_{2} \mathrm{O} \times 18 \mathrm{~g} / \mathrm{mole}=\underline{45 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}$

100 g TOTAI


## Limiting Reagents



Tungsten metal is used to make lightbulb filaments. How much tungsten (VI) oxide and hydrogen are needed to make 50 g tungsten?
$\therefore \mathrm{WO}_{3(\mathrm{~s})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{W}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$50 \mathrm{~g} \times 1 \mathrm{~mole} / 183.84 \mathrm{~g}=0.272$ moles W
0.272 mole $\mathrm{WO}_{3} \times 231.54 \mathrm{~g} / 1$ mole $^{2} \mathrm{WO}_{3}=63 \mathrm{~g} \mathrm{WO} 3$
0.816 moles $\times 2 \mathrm{~g} / 1$ mole $\mathrm{H}_{2}=1.63 \mathrm{~g} \mathrm{H} 2$

What if only only 1 g of Hydrogen is available?
What if only 45 g of W are produced (when 50 g is expected)?


## Yield

* Ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ decomposes to form dinitrogen oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ gas and water. If 12.65 grams of $\mathrm{N}_{2} \mathrm{O}$ are formed from 25 grams of $\mathrm{NH}_{4} \mathrm{NO}_{3}$, what is the yield?
$\mathrm{NH}_{4} \mathrm{NO}_{3} \longrightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$


## Yield

* Ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ decomposes to form dinitrogen oxide ( $\mathrm{N}_{2} \mathrm{O}$ ) gas and water. If 12.65 grams of $\mathrm{N}_{2} \mathrm{O}$ are formed from 25 grams of $\mathrm{NH}_{4} \mathrm{NO}_{3}$, what is the yield?
$\mathrm{NH}_{4} \mathrm{NO}_{3} \longrightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
$25 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3} \times 1$ mole/ $80 \mathrm{~g}=0.3125$ moles $\mathrm{NH}_{4} \mathrm{NO}_{3}$
$12.65 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O} \times 1 \mathrm{~mole} / 44 \mathrm{~g}=0.2875$ moles $\mathrm{N}_{2} \mathrm{O}$
Yield $=$ actual amount $\times 100 \%=0.2875$ moles $=92 \%$ expected amount $\quad 0.3125$ moles


## Yield

If 50 g of aluminum metal react in oxygen to generate a $75 \%$ yield of aluminum oxide, how many grams are produced?
$4 \mathrm{Al}+3 \mathrm{O}_{2}-------\cdots \mathrm{Al}_{2} \mathrm{O}_{3}$

$\mathrm{Al}_{2} \mathrm{O}_{3}$

## Yield

If 50 g of aluminum metal react in oxygen to generate a $75 \%$ yield of aluminum oxide, how many grams are produced?


## Limiting Reagent

* 50 hamburger patties +120 buns $=50$ burgers



## Limiting Reagent



## Limiting Reagent

In the formation of tungsten, 3 moles of each reactant are available for the reaction. What substance is the excess reactant?

$$
\mathrm{WO}_{3(s)}+3 \mathrm{H}_{2(g)}->\mathrm{W}_{(s)}+3 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

## Limiting Reagent

In the formation of tungsten, 3 moles of each reactant are available for the reaction. What substance is the excess reactant?

$$
\mathrm{WO}_{3(\mathrm{~s})}+3 \mathrm{H}_{2(\mathrm{~g})}->\mathrm{W}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

3 mol of hydrogen are needed for the reaction of
1 mol of Tungsten so hydrogen is
(W = excess)


## Conservation of Energy

- Potential Energy + Kinetic Energy = TOTAL ENERGY

- ENERGY can be converted from one form to another but cannot be created or destroyed.


## Enthalpy H

For $\Delta \mathrm{H}=\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}$
If $\Delta \mathbf{H}=+\quad$ Endothermic
$\Delta H=-\quad$ Exothermic


## Reaction Energy

* When ethyl alcohol combusts, 1360 kJ of energy is released per mole of alcohol.
* $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2}-\cdots-\cdots \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

How much energy is released when 250 mL ethyl alcohol combusts?

## Reaction Energy

* When ethyl alcohol combusts, 1360 kJ of energy is released per mole of alcohol.
$\% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2}-\cdots------>\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
How much energy is released when 250 mL ethyl alcohol combusts?
$250 \mathrm{~mL} \times 0.78 \mathrm{~g} / \mathrm{mL}=195 \mathrm{~g}$ ethyl alcohol
195 g x 1 mole $/ 46 \mathrm{~g}=4.24$ moles
4.24 moles $\times 1360 \mathrm{~kJ} /$ mole $=5765 \mathrm{~kJ}$ released


## Unit 2 Review

* Balancing chemical equations
* Mass percent, empirical and molecular formulas
* Molecular mass and the mole
* Mole <-> gram conversions
* Reaction Stoichiometry; Yield; Limiting Reagent
* Energy of Reaction

