Stoichiometry

 $1 \text{ CH}_4 + 2 \text{ O}_2 \implies 1 \text{ CO}_2 + 2 \text{ H}_2\text{O}$

1 mole = 6.02×10^{23} of anything

Avogadro's number

<section-header><section-header><text><equation-block><equation-block>

Sodium hydroxid

Stoichiometry

* How many grams of sodium azide are needed to fill a car's air bag with 75 g N_2 ?

 $2 \text{ NaN}_3 \longrightarrow 3 \text{ N}_2 + 2 \text{ Na}$

Stoichiometry

Ammonium nitrate can explode at high temperatures:

 $NH_4NO_{3(s)} \rightarrow N_{2(g)} + O_{2(g)} + H_2O_{(g)}$

What is the total mass of gases produced when 100 g ammonium nitrate explodes?

Stoichiometry

- Ammonium nitrate can explode at high temperatures:
 - $2 \text{ NH}_4\text{NO}_{3(s)} \rightarrow 2 \text{ N}_{2(g)} + \text{O}_{2(g)} + 4 \text{ H}_2\text{O}_{(g)}$

What is the total mass of gases produced when 100 g ammonium nitrate explodes?

Stoichiometry

- Ammonium nitrate can explode at high temperatures:
 - **2** NH₄NO_{3(s)} → **2** N_{2(g)} + O_{2(g)} + **4** H₂O_(g)

What is the total mass of gases produced when 100 g ammonium nitrate explodes?

100 g x 1 mole/80 g = 1.25 moles NH4NO₈

1.25 moles NH4NO3 x 2 moles N2/2 moles NH4NO 1.25 moles N2 1.25 moles NH4NO3 x 1 mole O2/2 moles NH4NO3 = 0.625 moles O2

0.625 moles O2

1.25 moles NH4NO3 x 4 moles H2O/2 moles NH4N0 2.5 moles H2O

Stoichiometry

Ammonium nitrate can explode at high temperatures:

 $2 \, \mathrm{NH}_4 \mathrm{NO}_{3(s)} \rightarrow 2 \, \mathrm{N}_{2(g)} + \mathrm{O}_{2(g)} + 4 \, \mathrm{H}_2 \mathrm{O}_{(g)}$

100 g TOTAL

Stoichiometry

Tungsten metal is used to make lightbulb filaments. How much tungsten (VI) oxide and hydrogen are needed to make 50 g tungsten?

$$WO_{3(s)} + 3 H_{2(g)} - W_{(s)} + 3 H_2O_{(g)}$$

Stoichiometry

Tungsten metal is used to make lightbulb filaments. How much tungsten (VI) oxide and hydrogen are needed to make 50 g tungsten?

* $WO_{3(s)}$ + 3 $H_{2(g)}$ ---> $W_{(s)}$ + 3 $H_2O_{(g)}$

50 g x 1 mole/183.84 g = 0.272 moles W

0.272 mole WO₃ x 231.54 g/1 mole WO₃ = 63 g WO₃

0.816 moles x 2 g/1 mole H₂ = 1.63 gH₂

Limiting Reagents

Tungsten metal is used to make lightbulb filaments. How much tungsten (VI) oxide and hydrogen are needed to make 50 g tungsten?

 $WO_{3(s)} + 3 H_{2(g)} - W_{(s)} + 3 H_2O_{(g)}$

50 g x 1 mole/183.84 g = 0.272 moles W

0.272 mole WO₃ x 231.54 g/1 mole WO₃ = 63 g WO₃

0.816 moles x 2 g/1 mole $H_2 = 1.63 g H_2$

What if only only 1 g of Hydrogen is available?

Yield

 Ammonium nitrate (NH₄NO₃) decomposes to form dinitrogen oxide (N₂O) gas and water. If 12.65 grams of N₂O are formed from 25 grams of NH₄NO₃, what is the yield?

 $NH_4NO_3 ----> N_2O + 2 H_2O$

Yield

Ammonium nitrate (NH₄NO₃) decomposes to form dinitrogen oxide (N₂O) gas and water. If 12.65 grams of N₂O are formed from 25 grams of NH₄NO₃, what is the yield?

 $NH_4NO_3 ----> N_2O + 2 H_2O$

 $25 \text{ g NH}_4 \text{NO}_3 \times 1 \text{ mole}/80 \text{ g} = 0.3125 \text{ moles NH}_4 \text{NO}_3$

12.65 g N₂O x 1mole/44g = 0.2875 moles N₂O

Yield = actual amount x 100% = 0.2875 moles = 92%

expected amount 0.3125 mole

Limiting Reagent

✤ 50 hamburger patties + 120 buns = 50 burgers

Limiting Reagent 50 hamburger patties + 120 buns = 50 burgers *Limiting* excess

Limiting Reagent

In the formation of tungsten, 3 moles of each reactant are available for the reaction. What substance is the excess reactant?

 $WO_{3(s)} + 3 H_{2(g)} \rightarrow W_{(s)} + 3 H_2O_{(g)}$

In the formation of tungsten, 3 moles of each reactant are available for the reaction. What substance is the excess reactant?

 $WO_{3(s)} + 3 H_{2(g)} \rightarrow W_{(s)} + 3 H_2O_{(g)}$

3 mol of hydrogen are needed for the reaction of 1 mol of Tungsten so hydrogen is **limiting** (W = excess)

Reaction Energy

When ethyl alcohol combusts, 1360 kJ of energy is released per mole of alcohol.

 $C_2H_5OH + 3O_2 - 2CO_2 + 3H_2O$

How much energy is released when 250 mL ethyl alcohol combusts?

Reaction Energy

 When ethyl alcohol combusts, 1360 kJ of energy is released per mole of alcohol.

 $\bullet C_2H_5OH + 3O_2 ----> 2CO_2 + 3H_2O$

How much energy is released when 250 mL ethyl alcohol combusts?

250 mL x 0.78 g/mL = 195 g ethyl alcohol

195 g x 1 mole / 46 g = 4.24 moles

4.24 moles x 1360 kJ/mole = **5765 kJ released**

Unit 2 Review

- Balancing chemical equations
- Mass percent, empirical and molecular formulas
- Molecular mass and the mole
- ✤ Mole <-> gram conversions
- * Reaction Stoichiometry; Yield; Limiting Reagent
- ✤ Energy of Reaction