

Gases

- Quantities important to characterizing gases:

		Units
Pressure	force/area	Atm, mm Hg, torr, pascal
Volume	Space occupied	Liter, cm^{3}
Temperature	Kinetic energy and velocity of gas particles	${ }^{\circ} \mathrm{C}$ or K
Amount	\# of particles	moles

Pressure

Atmospheric Pressure:
760 mm Hg

Boyle's Law

If a 10.0 L helium balloon has a pressure of 655 mm Hg , what is the pressure if the balloon's Volume decreases to 2.5 L ?

Boyle's Law

If a 10.0 L helium balloon has a pressure of
655 mm Hg , what is the pressure if the balloon's
Volume decreases to 2.5 L?

$$
\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2}
$$

$655 \mathrm{~mm} \mathrm{Hg}(10 \mathrm{~L})=\mathrm{p}_{2}(2.5 \mathrm{~L})$

- $p_{2}=2620 \mathrm{~mm} \mathrm{Hg}$

Charles' Law

- Charles' Law:

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

Volume increases as temperature ir

Charles' Law

If that 10.0 L balloon at $25^{\circ} \mathrm{C}$ is released
at Kaufman Stadium in Kansas City $\left(-4^{\circ} \mathrm{C}\right)$
What is the new volume?
$\frac{10.0 L}{298 K}=\frac{V_{2}}{269 K}$
$V_{2}=9.02 \mathrm{~L}$

Charles' Law

If that 10.0 L balloon at $25^{\circ} \mathrm{C}$ is released
at Kaufman Stadium in Kansas City $\left(-4^{\circ} \mathrm{C}\right)$
What Is the new volume?

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

Gay-Lussac's Law

- Gay-Lussac's Law:

Combined Gas Law

$$
\begin{aligned}
& \mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2} \\
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& \frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2} \mathrm{w}}
\end{aligned}
$$

Combined Gas Law

$\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2}$
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
$\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}$

Boyle's Law
$\underset{\text { Chares }}{\frac{p_{1} V_{1}}{T_{\mathrm{pw}}}}=\frac{p_{2} V_{2}}{T_{2}}$

Gay-Lussac's Law

Combined Gas Law

STP = Standard Temperature and Pressure
A hot air balloon has a Volume of 400 L when the temperature is $20^{\circ} \mathrm{C}$ and the pressure is 360 mm Hg

Ideal Gas Law

How many moles of Helium are present in a 65 L balloon at $20^{\circ} \mathrm{C}$ and 705 torr?
$\mathrm{pV}=\mathrm{nRT}$

Ideal Gas Law

How many moles of Helium are present
in a 65 L balloon at $20^{\circ} \mathrm{C}$ and 705 torr?
$\mathrm{pV}=\mathrm{nRT} \quad \mathrm{n}=\mathrm{pV} / \mathrm{RT}$
$=(705 / 760)$ atm (65 L)
($0.082 \mathrm{Latm} / \mathrm{mole} \mathrm{K}$)(293
$=2.5$ moles He

Ideal Gas Law

What is the pressure inside of a barbeque gas cylinder of propane with a volume of 45 L at $25^{\circ} \mathrm{C}$ if the cylinder contains 5 kg of propane?

$=61.7 \mathrm{~atm}$

Ideal Gas Law

What is the pressure inside of a barbeque gas cylinder of propane with a volume of 45 L at $25^{\circ} \mathrm{C}$ if the cylinder contains 5 kg of propane?
$\mathrm{pV}=\mathrm{nR} T$

Partial Pressure

Each gas atom/molecule acts independently so
Gas mixtures behave the same as pure gases.

Partial Pressure

Air: example of a gas mixture
$P_{\text {total }}=760 \mathrm{~mm} \mathrm{Hg}$
$=\mathrm{P}_{\mathrm{N} 2}+\mathrm{P}_{\mathrm{O}_{2}}+\mathrm{P}_{\mathrm{CO}_{2}}+\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$
$=573 \mathrm{~mm} \mathrm{Hg}+100 \mathrm{~mm} \mathrm{Hg}+40 \mathrm{~mm} \mathrm{Hg}+47$

Partial pressure $=P_{\text {total }} \quad \mathrm{P}_{\mathrm{O}_{2}}=760 \mathrm{~mm} \mathrm{Hg}$

