Practice Exam 2

For review on July 9, 2015

PART A (MULTIPLE CHOICE) Circle the correct response to each question:

1. When 4.50 g of Fe₂O₃ is reduced with excess H₂ in a furnace, 2.60 g of iron metal is recovered. What is the percent yield (the molar mass of Fe₂O₃ is 159.7 g/mole)

 $Fe_2O_{3(s)} + 3 H_{2(g)}$ -----> 2 $Fe_{(s)} + 3 H_2O_{(g)}$

- (A) 82.6%
- (B) 58.0%
- (C) 40.5%
- (D) 31.5%

2. The limiting reagent in a particular reaction can be recognized because it is the reagent that

- (A) has the smallest coefficient in the balanced equation
- (B) has the smallest mass in the reaction mixture
- (C) is present in the smallest molar quantity
- (D) would be used up first

3. In which of the following does nitrogen have an oxidation state of +4?

- (A) HNO_3
- (B) NO₂
- (C) N_2O
- (D) NH_4CI

4. What volume of 12M HCl is required to prepare exactly 500 mL of 0.60 M HCl?

- (A) 10 mL
- (B) 14 mL
- (C) 25 mL
- (D) 40 mL

5. What volume of $H_2O(g)$ measured at STP is produced by the combustion of 3.85 g of natural gas (CH₄) according to the following equation?

- (A) 5.38 L
- (B) 10.8 L
- (C) 2.69 L
- (D) 11.7 L

- 6. What is the molar mass of an ideal gas if a 0.622 g sample of this gas occupies a volume of 300. mL at 35°C and 789 mm Hg?
 - (A) 44.8 g/mole
 - (B) 48.9 g/mole
 - (C) 50.5 g/mole
 - (D) 54.5 g/mole
- 7. A vessel with a volume of 41.8 L contains 2.80 g of nitrogen gas, 0.403 g of hydrogen gas, and 79.9 g of argon gas. At 25°C, what is the pressure in the vessel?
 - (A) 48.6 atm
 - (B) 0.113 atm
 - (C) 1.52 atm
 - (D) 1.35 atm
- 8. How much heat is required to raise the temperature of a 4.48-g sample of iron (specific heat = $0.450 \text{ J/g}^{\circ}\text{C}$) from 25.0°C to 79.8°C?
 - (A) 1.98 J
 - (B) 246 J
 - (C) 546 J
 - (D) 110 J
- 9. Given the heats of the following reactions:

I.
$$P_4(s) + 6Cl_2(g) ----> 4PCl_3(g)$$
 -1225.6

I.
$$P_4(s) + 6CI_2(g) ---> 4PCI_3(g)$$
 -1225.6
II. $P_4(s) + 5O_2(g) ---> P_4O_{10}(s)$ -2967.3
III. $PCI_3(g) + CI_2(g) ---> PCI_5(g)$ -84.2

III.
$$PCl_{3}(g) + Cl_{2}(g) ----> PCl_{5}(g)$$
 -84.2

IV.
$$PCI_3(g) + \frac{1}{2}O_2(g) ---> CI_3PO(g)$$
 -285.7

Calculate the value of ΔH° for the reaction below:

$$P_4O_{10}(s) + 6PCI_5(g) -----> 10CI_3PO(g)$$

- (A) -110.5 kJ
- -610.1 kJ (B)
- (C) -2682**.**2 kJ
- (D) -7555.0 kJ

- 10. The heat of combustion of acetylene, $C_2H_2(g)$, at 25°C is –1299 kJ/mol. At this temperature, ΔH_f ° values for $CO_2(g)$ and $H_2O(I)$ are –393 and –286 kJ/mol, respectively. Calculate ΔH_f ° for acetylene.
 - (A) 2376 kJ/mol
 - (B) 625 kJ/mol
 - (C) 227 kJ/mol
 - (D) -625 kJ/mol

PART B (SHORT ANSWERS) Please show all of your calculations <u>in the places</u> <u>provided</u>.

1. (a) (5 pts) 15 mL of a 0.07M solution of Pb(NO₃)₂ is mixed with 9 mL of a 0.15 M solution of Na₂SO₄. What is the mass of PbSO₄ that would be expected to precipitate? Pb(NO₃)_{2(aq)} + Na₂SO_{4(aq)} ------> PbSO_{4(s)} + 2 Na⁺_(aq) + 2 NO₃⁻_(aq)

(b) (5 pts) Aspirin (acetylsalicylic acid $C_9H_8O_4$) is prepared by heating salicylic acid $C_7H_6O_3$ with acetic anhydride $C_4H_6O_3$. The other product is acetic acid (vinegar, $C_2H_4O_2$).

$$C_7H_6O_3 + C_4H_6O_3 -----> C_9H_8O_4 + C_2H_4O_2$$

When 2.00 g of salicylic acid is heated with 4.0 g of acetic anhydride, 1.98 g of aspirin is recovered. What is the yield of aspirin?

- **2. (a) (**6 *pts***)** Write complete net ionic equations for the following combinations of solutions and the identity of the solid precipitate formed:
- (i) solutions of CuCl₂ and Na₂S
- (ii) solutions of NH₄Cl and LiSO₄
- (iii) solutions of KOH and Fe(NO₃)₂

(b) (4 pts) Sulfamic acid, HSO_3NH_2 (molar mass = 97.1 g/mol), is a strong monoprotic acid that can be used to standardize a strong base:

$$HSO_3NH_2 + KOH -----> H_2O + K^+ + SO_3NH_2^-$$

A 0.177-g sample of HSO_3NH_2 required 19.4 mL of an aqueous solution of KOH What is the molarity of the KOH solution?

- (c) (4 pts) In the following equation: $C_3H_5(NO_3)_3$ -----> $N_2 + CO_2 + H_2O + O_2$ identify what is oxidized and what is reduced.
- 3. (a) (5 pts) A 3.50 g sample of acetylene is burned in excess oxygen:

$$2 C_2 H_{2(g)} + 5 O_{2(g)}$$
 -----> $4 CO_{2(g)} + 2 H_2 O_{(l)}$

At STP, what volume of CO₂ gas is produced if all of the acetylene is used up?

(b) (5 pts) The gas inside of a sealed diving bell contains a mixture of oxygen and helium gases. If it holds 0.200 atm of O_2 and a total pressure of 3.00 atm, calculate the mass of helium in 10.0 L of the gas mixture at 20°C.

4. (a) (5 pts**)** If it takes 4.67 times longer for an unknown gas to effuse from a container than does hydrogen (H_2) gas under the same conditions, what is the molecular mass of the gas?

(b) (5 pts) A 28.0 g piece of aluminum metal ($C_{AI} = 0.897 \frac{J}{g^{\circ}C}$) is dropped into 100.0 g of water initially at 20° C. If the final temperature of the metal and the water is 24.0°C, what was the initial temperature of the aluminum?

5. a. (5 pts) You take 243.8 g of a solid at 30.0°C and let it melt in 425 g of water. The water temperature decreases from 85.1°C to 30.0°C. Calculate the heat of fusion of this solid.

(b)(5 pts) Consider the following data:

$$\Delta H^{\circ}(kJ)$$

$$Ca(s) + 2C(graphite) ----> CaC_{2}(s) -62.8$$

$$Ca(s) + \frac{1}{2}O_{2}(g) ----> CaO(s) -635.5$$

$$CaO(s) + H_{2}O(I) ----> Ca(OH)_{2}(aq) -653.1$$

$$C_{2}H_{2}(g) + \frac{1}{2}O_{2}(g) ----> 2CO_{2}(g) + H_{2}O(I) -1300$$

$$C(graphite) + O_{3}(g) ----> CO_{3}(g) -393.51$$

Use Hess' law to find the change in enthalpy at 25°C for the following equation:

$$CaC_{3}(s) + 2H_{3}O(l) -----> Ca(OH)_{3}(aq) + C_{3}H_{3}(g)$$

Equations Boyle's Law:
$$P_1V_1 = p_2V_2$$
 Charles' Law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

Gay-Lussac's Law: $\frac{p_1}{T_1} = \frac{p_2}{T_2}$

Combined gas Law: $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$

Ideal Gas Law: $\frac{1}{T_1} = \frac{p_2V_2}{T_2}$

Dalton's Law of Partial Pressures: $p_T = \sum (p_1 + p_2 + p_3 +)$

$$q = m C \Delta T$$
 $M_1V_1 = M_2V_2$