
Coastline College Dupon

Practice Exam 3For review on July 24, 2015

		, ,,
PART	A (MUL	TIPLE CHOICE) Circle the correct response to each question:
1. Wh	at is the	wavelength of a photon of red light (in nm) whose frequency is $4.64 \times 10^{14} \text{ Hz}$?
	(A)	646 nm
		1.55 x 10 ⁶ nm
		155 nm
	(D)	464 nm
2. The	e comple	ete electron configuration for antimony is
	(A)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5d ¹⁰ 5p ³
	(B)	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4d^{10} 4p^3$
	(C)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 4p ⁶ 5s ² 4d ¹⁰ 5d ¹⁰ 5p ³
		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5p ³
3. Ord	der the e	elements S, Cl, and F in terms of increasing ionization energy.
	(A)	S, Cl, F
		CI, F, S
	(C)	F, S, Cl
	(D)	F, Cl, S
4. Wh	ich of th	ne following has the smallest radius?
	(A)	F ⁻
	(B)	Ne
	(C)	O^{2-}
	(D)	Mg ²⁺
5. Thi	s molecı	le shows the smallest number of lone pairs in its Lewis structure.
	(A) Cł	H₃CHO
	(B) C0	D_2
	(C) CH	I₃Cl
	(D) C ₂	H ₆
6. In 1	:he Lewi	s structure for ICl ₂ -, how many lone pairs of electrons are around the central
	iodine a	tom?
	(A)	0
	(B)	1
	(C)	2
	(D)	3
7. In t		ide ion (CN ⁻), the nitrogen has a formal charge of
	(A)	-2
	(B)	-1
	(C)	0

- 8. The Cl–Kr–Cl bond angle in KrCl₄ is closest to
 - (A) 90°
 - (B) 109°
 - (C) 120°
 - (D) 150°
- 9. The hybridization of the central atom in O₃ is:
 - (A) sp
 - (B) sp^2
 - (C) sp^3
 - (D) dsp^3
- 10. Tetracyanoethylene has the skeleton shown below:

From its Lewis structure determine the following:

- (A) 4 sigma and 5 pi
- (B) 6 sigma and 8 pi
- (C) 9 sigma and 8 pi
- (D) 9 sigma and 9 pi

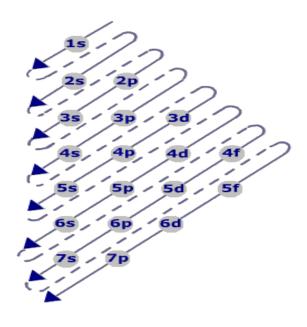
PART B (SHORT ANSWERS) Please show all of your calculations in the places provided.

1. (a) (5 pts) An electron in the hydrogen atom can drop from the n=3 level to the n=2 level. What is the Energy of this transition? What wavelength of light is emitted?

(b) (5 pts) Given the following sets of quantum numbers, identify the shell and subshell:

2. (a) (5 pts) Write complete ground state electrospecies:	etron configurations for the following atomic (ii) Mo ²⁺										
(i) S ²⁻											
(m) -1	(1. N. a.)										
(iii) Rb	(iv) Sb										
(v) Ge											
(b) (5 pts) Arrange each group of atoms, ions or (i) increasing radius: Br Rb Se ² Te	compounds in the designated order:										
(ii) Lowest first ionization energy: As Bi Pb Sn											
(iii) Number of valence electrons: Sr S Si Cs											
(iv) Increasing Electron affinity: O Ge Zr Rb											
(v) Increasing Lattice Energy: InAs KBr SrSe											
3. (a) (5 pts) Write Lewis dot structure for the fo											
(i) NOCI	(ii) XeF ₂										
(iii) SO ₂	(iv) HCN										
(v) NH ₄ ⁺											

(b) (5 pts) Salts containing the fulminate ion, CN two resonance forms for fulminate ion and use stable.	
4. (a) (5 <i>pts</i>) Use VSEPR to predict the geometry (i) XeO ₃	of the following ion and molecular species: (ii) AsF ₃
(iii) CH ₂ Cl ₂	(iv) IBr ₂ ⁺
(v) CIF ₂ ⁻	
(b) (5 pts) Which of the molecules in part 4(a) we For those molecules, draw the expected direction	
5. a. (5 pts) Describe the bonding in formaldehy and molecular orbitals.	de (H₂CO) in terms of hybrid atomic orbitals


(b)(5 pts) The C_2 molecule exists in the vapor phase at high temperature. Draw a molecular orbital diagram for C₂ and find the bond order for this molecule.

Equations

$$c = \lambda x v$$

$$E = hv$$
 $h = 6.626 \times 10^{-34} Js$

$$\Delta E = -2.179 \times 10^{-18} J \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

<u>H</u> 2.1																	<u>He</u>
<u>Li</u> 1.0	<u>Be</u> 1.5											<u>B</u> 2.0	<u>C</u> 2.5	<u>N</u> 3.0	<u>Q</u> 3.5	<u>E</u> 4.0	<u>Ne</u>
<u>Na</u> 0.9	Mg 1.2											<u>Al</u> 1.5	<u>Si</u> 1.8	<u>P</u> 2.1	<u>S</u> 2.5	<u>Cl</u> 3.0	<u>Ar</u>
<u>K</u> 0.8	<u>Ca</u> 1.0	<u>Sc</u> 1.3	<u>Ti</u> 1.5	<u>V</u> 1.6	<u>Cr</u> 1.6	Mn 1.5	<u>Fe</u> 1.8	<u>Co</u> 1.9	<u>Ni</u> 1.8	<u>Cu</u> 1.9	<u>Zn</u> 1.6	<u>Ga</u> 1.6	<u>Ge</u> 1.8	<u>As</u> 2.0	<u>Se</u> 2.4	<u>Br</u> 2.8	<u>Kr</u>
<u>Rb</u> 0.8	<u>Sr</u> 1.0	<u>Y</u> 1.2	<u>Zr</u> 1.4	<u>Nb</u> 1.6	<u>Mo</u> 1.8	<u>Tc</u> 1.9	<u>Ru</u> 2.2	<u>Rh</u> 2.2	<u>Pd</u> 2.2	<u>Ag</u> 1.9	<u>Cd</u> 1.7	<u>In</u> 1.7	<u>Sn</u> 1.8	<u>Sb</u> 1.9	<u>Te</u> 2.1	<u>l</u> 2.5	<u>Xe</u>
<u>Cs</u> 0.7	<u>Ba</u> 0.9	<u>Lu</u>	<u>Hf</u> 1.3	<u>Ta</u> 1.5	<u>W</u> 1.7	<u>Re</u> 1.9	<u>Os</u> 2.2	<u>Ir</u> 2.2	<u>Pt</u> 2.2	<u>Au</u> 2.4	<u>Hg</u> 1.9	<u>Tl</u> 1.8	<u>Pb</u> 1.9	<u>Bi</u> 1.9	<u>Po</u> 2.0	<u>At</u> 2.2	<u>Rn</u>
<u>Fr</u> 0.7	<u>Ra</u> 0.9	<u>Lr</u>	<u>Rf</u>	<u>Db</u>	<u>Sg</u>	<u>Bh</u>	<u>Hs</u>	Mt	<u>Ds</u>	<u>Uuu</u>	<u>Uub</u>	<u>Uut</u>	<u>Uuq</u>	<u>Uup</u>	<u>Uuh</u>	<u>Uus</u>	<u>Uuo</u>