Coastline College Dupon **Practice Exam 3**For review on July 24, 2015 | | | , ,, | |---------------|--------------------|--| | PART | A (MUL | TIPLE CHOICE) Circle the correct response to each question: | | 1. Wh | at is the | wavelength of a photon of red light (in nm) whose frequency is $4.64 \times 10^{14} \text{ Hz}$? | | | (A) | 646 nm | | | | 1.55 x 10 ⁶ nm | | | | 155 nm | | | (D) | 464 nm | | 2. The | e comple | ete electron configuration for antimony is | | | (A) | 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5d ¹⁰ 5p ³ | | | (B) | $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4d^{10} 4p^3$ | | | (C) | 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 4p ⁶ 5s ² 4d ¹⁰ 5d ¹⁰ 5p ³ | | | | 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5p ³ | | 3. Ord | der the e | elements S, Cl, and F in terms of increasing ionization energy. | | | (A) | S, Cl, F | | | | CI, F, S | | | (C) | F, S, Cl | | | (D) | F, Cl, S | | 4. Wh | ich of th | ne following has the smallest radius? | | | (A) | F ⁻ | | | (B) | Ne | | | (C) | O^{2-} | | | (D) | Mg ²⁺ | | 5. Thi | s molecı | le shows the smallest number of lone pairs in its Lewis structure. | | | (A) Cł | H₃CHO | | | (B) C0 | D_2 | | | (C) CH | I₃Cl | | | (D) C ₂ | H ₆ | | 6. In 1 | :he Lewi | s structure for ICl ₂ -, how many lone pairs of electrons are around the central | | | iodine a | tom? | | | (A) | 0 | | | (B) | 1 | | | (C) | 2 | | | (D) | 3 | | 7. In t | | ide ion (CN ⁻), the nitrogen has a formal charge of | | | (A) | -2 | | | (B) | -1 | | | (C) | 0 | - 8. The Cl–Kr–Cl bond angle in KrCl₄ is closest to - (A) 90° - (B) 109° - (C) 120° - (D) 150° - 9. The hybridization of the central atom in O₃ is: - (A) sp - (B) sp^2 - (C) sp^3 - (D) dsp^3 - 10. Tetracyanoethylene has the skeleton shown below: From its Lewis structure determine the following: - (A) 4 sigma and 5 pi - (B) 6 sigma and 8 pi - (C) 9 sigma and 8 pi - (D) 9 sigma and 9 pi PART B (SHORT ANSWERS) Please show all of your calculations in the places provided. 1. (a) (5 pts) An electron in the hydrogen atom can drop from the n=3 level to the n=2 level. What is the Energy of this transition? What wavelength of light is emitted? **(b)** (5 pts) Given the following sets of quantum numbers, identify the shell and subshell: | 2. (a) (5 pts) Write complete ground state electrospecies: | etron configurations for the following atomic (ii) Mo ²⁺ | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--|--| | (i) S ²⁻ | (m) -1 | (1. N. a.) | | | | | | | | | | | | (iii) Rb | (iv) Sb | (v) Ge | (b) (5 pts) Arrange each group of atoms, ions or
(i) increasing radius: Br Rb Se ² Te | compounds in the designated order: | | | | | | | | | | | | (ii) Lowest first ionization energy: As Bi Pb Sn | | | | | | | | | | | | | (iii) Number of valence electrons: Sr S Si Cs | | | | | | | | | | | | | (iv) Increasing Electron affinity: O Ge Zr Rb | | | | | | | | | | | | | (v) Increasing Lattice Energy: InAs KBr SrSe | | | | | | | | | | | | | 3. (a) (5 pts) Write Lewis dot structure for the fo | | | | | | | | | | | | | (i) NOCI | (ii) XeF ₂ | (iii) SO ₂ | (iv) HCN | (v) NH ₄ ⁺ | | | | | | | | | | | | | (b) (5 pts) Salts containing the fulminate ion, CN two resonance forms for fulminate ion and use stable. | | |---|---| | 4. (a) (5 <i>pts</i>) Use VSEPR to predict the geometry (i) XeO ₃ | of the following ion and molecular species: (ii) AsF ₃ | | (iii) CH ₂ Cl ₂ | (iv) IBr ₂ ⁺ | | (v) CIF ₂ ⁻ | | | (b) (5 pts) Which of the molecules in part 4(a) we For those molecules, draw the expected direction | | | 5. a. (5 pts) Describe the bonding in formaldehy and molecular orbitals. | de (H₂CO) in terms of hybrid atomic orbitals | (b)(5 pts) The C_2 molecule exists in the vapor phase at high temperature. Draw a molecular orbital diagram for C₂ and find the bond order for this molecule. ## **Equations** $$c = \lambda x v$$ $$E = hv$$ $h = 6.626 \times 10^{-34} Js$ $$\Delta E = -2.179 \times 10^{-18} J \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$ | <u>H</u> 2.1 | | | | | | | | | | | | | | | | | <u>He</u> | |------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------| | <u>Li</u>
1.0 | <u>Be</u>
1.5 | | | | | | | | | | | <u>B</u> 2.0 | <u>C</u>
2.5 | <u>N</u>
3.0 | <u>Q</u>
3.5 | <u>E</u>
4.0 | <u>Ne</u> | | <u>Na</u>
0.9 | Mg
1.2 | | | | | | | | | | | <u>Al</u>
1.5 | <u>Si</u>
1.8 | <u>P</u>
2.1 | <u>S</u>
2.5 | <u>Cl</u>
3.0 | <u>Ar</u> | | <u>K</u>
0.8 | <u>Ca</u>
1.0 | <u>Sc</u>
1.3 | <u>Ti</u>
1.5 | <u>V</u>
1.6 | <u>Cr</u>
1.6 | Mn
1.5 | <u>Fe</u>
1.8 | <u>Co</u>
1.9 | <u>Ni</u>
1.8 | <u>Cu</u>
1.9 | <u>Zn</u>
1.6 | <u>Ga</u>
1.6 | <u>Ge</u>
1.8 | <u>As</u>
2.0 | <u>Se</u>
2.4 | <u>Br</u>
2.8 | <u>Kr</u> | | <u>Rb</u>
0.8 | <u>Sr</u>
1.0 | <u>Y</u>
1.2 | <u>Zr</u>
1.4 | <u>Nb</u>
1.6 | <u>Mo</u>
1.8 | <u>Tc</u>
1.9 | <u>Ru</u>
2.2 | <u>Rh</u>
2.2 | <u>Pd</u>
2.2 | <u>Ag</u>
1.9 | <u>Cd</u>
1.7 | <u>In</u>
1.7 | <u>Sn</u>
1.8 | <u>Sb</u>
1.9 | <u>Te</u>
2.1 | <u>l</u>
2.5 | <u>Xe</u> | | <u>Cs</u>
0.7 | <u>Ba</u>
0.9 | <u>Lu</u> | <u>Hf</u>
1.3 | <u>Ta</u>
1.5 | <u>W</u>
1.7 | <u>Re</u>
1.9 | <u>Os</u>
2.2 | <u>Ir</u>
2.2 | <u>Pt</u>
2.2 | <u>Au</u>
2.4 | <u>Hg</u>
1.9 | <u>Tl</u>
1.8 | <u>Pb</u>
1.9 | <u>Bi</u>
1.9 | <u>Po</u>
2.0 | <u>At</u>
2.2 | <u>Rn</u> | | <u>Fr</u> 0.7 | <u>Ra</u>
0.9 | <u>Lr</u> | <u>Rf</u> | <u>Db</u> | <u>Sg</u> | <u>Bh</u> | <u>Hs</u> | Mt | <u>Ds</u> | <u>Uuu</u> | <u>Uub</u> | <u>Uut</u> | <u>Uuq</u> | <u>Uup</u> | <u>Uuh</u> | <u>Uus</u> | <u>Uuo</u> |