Chem 130
Coastline College
Fall 2016
Practice Final Exam
(25 pts)
For review on Dec 7, 2016

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

1. (a) (10 pts) Normal air contains about 0.28 g of oxygen per liter. An average human inhales about 0.50 L of air per breath and takes about 20 breaths per minute. How many grams of oxygen does a human inhale per hour?
(b) (10 pts) Find the density of the metal used if a 42.55 g sample added to a graduated cylinder of water raises the level of water by 4.77 mL ? (Make sure that your answer has the correct \# of significant figures)
2. (a) Complete the following table:

Element	Atomic Symbol	\mathbf{Z}	A	\# protons	\# neutrons	\# electrons
	F^{-}					
		83	209			83
Cobalt-60						
				80	119	80
	Sr^{2+}				50	

(b) Complete the table below with the missing formula or name:

Ionic or Covalent?	Formula	Name
	$\mathrm{P}_{4} \mathrm{O}_{8}$	
		Strontium bromide
		Carbon tetraiodide
	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	
	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	

3. (a) Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, a substance used as rocket fuel, reacts with oxygen as follows:

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many grams of oxygen are needed to react with 165 g of hydrazine?
(b) The "French paradox" is a phenomenon noted where, despite a high fat diet, there is a relatively low mortality rate from coronary heart disease in France. Researchers have implicated resveratrol, a compound found in grapes as having a cardioprotective effect. Chemical analysis of red Bordeaux grapes showed the analytical results as follows:

$$
\begin{gathered}
\% C=73.68 \% \\
\% H=5.26 \% \\
\% O=21.06 \%
\end{gathered}
$$

Based on the elemental data, suggest an empirical formula for resveratrol.
4. (a) ($\mathbf{1 0}$ pts) 15 mL of a 0.07 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is mixed with 9 mL of a 0.15 M solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. What is the mass of PbSO_{4} that would be expected to precipitate?
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\text { aq })}--------->\mathrm{PbSO}_{4(\mathrm{~s})}+2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
(b) (10 pts) Nitroglycerin $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}\right)$ is a powerful explosive that decomposes as follows: $4 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}---->6 \mathrm{~N}_{2}+12 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

If 200 g of nitroglycerin react and 6.55 g of oxygen are produced, what is the yield?
5. (a) Write electron configurations for the following atomic species:
(i) Se^{2-}
(ii) Sc
(iii) Al
(iv) Ca^{2+}
(v) Mn^{2+}
(b) Arrange the atomic species listed in order of increasing size:
(i) Na Al Cl
(ii) $\mathrm{Pb} \quad \mathrm{Si} \mathrm{Sn}$
(iii) $\mathrm{N} \mathrm{N}^{3^{-}} \mathrm{C}$
(c) Arrange the atoms listed in order of decreasing electron affinity:
(i) $\mathrm{K} \mathrm{Br} \mathrm{Ga} \mathrm{(ii)} \mathrm{As} \mathrm{Sn}$ S
6.(a) Sketch Lewis dot structures for the following covalent molecules:
(i) BBr_{3}
(ii) CHCl_{3}
(iii) $\mathrm{CH}_{2} \mathrm{O}$
(iv) NCCl
(v) $\mathrm{S}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$
(b) For each of the molecules drawn in part (a), identify the geometry at the underlined atom.
7. (a) Microwaves emit electromagnetic radiation with a wavelength of 12.9 cm . What is the energy associated with microwaves?
(b) How much heat energy is released when 150 g of iron metal reacts with elemental chlorine gas:

$$
2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \cdots 2 \mathrm{FeCl}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}^{\circ}=-799.0 \mathrm{~kJ} / \mathrm{mol}
$$

8. (a) Hyperbaric oxygen therapy is the use of oxygen gas at level higher than normal atmospheric pressure, which is effective in treating carbon monoxide poisoning. If the chamber has a volume of 200 L , how many grams of oxygen are needed to pressurize the chamber to 3 atm at a temperature of $27^{\circ} \mathrm{C}$?
(b) A sample of ammonia gas at $40^{\circ} \mathrm{C}$ exerts a pressure of $5.3 \mathrm{~atm}-$ what is the pressure if the temperature is raised to $100^{\circ} \mathrm{C}$?
9. (a) Find the pH of the following solutions:
(i) freshly squeezed lemon juice: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.47 \times 10^{-4} \mathrm{M}$
(b) bleach solution: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=9.96 \times 10^{-12} \mathrm{M}$
10. (a) Balance the following chemical equations:
(i) __PbS + __O $\quad-->\quad$ _ $\mathrm{PbO}+\ldots \mathrm{SO}_{2}$
(ii) $\quad \mathrm{Na}_{3} \mathrm{PO}_{4}+\ldots \mathrm{MgCl}_{2} \quad--->\quad \ldots \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad+\quad \ldots \mathrm{NaCl}$
(iii) __ $\mathrm{S}_{2} \mathrm{Cl}_{2}+\ldots \mathrm{NH}_{3}-->\quad \ldots \mathrm{N}_{2} \mathrm{~S}_{4}+\ldots \mathrm{NH}_{4} \mathrm{Cl}+\ldots \mathrm{S}_{8}$
(b) For each of the equations in part (a), identify the type of reaction.

Conversion Factors

1.0 kilogram	2.2 pounds	1000 grams
1.0 kilometers	0.6214 miles	1000 meters
1 meter	39.37 inches	1000 millimeters
1 liter	1.057 quarts	0.264 gallons
$1 \mathrm{~cm}^{3}$	1 milliliter	0.0338 fluid ounces
${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9$	${ }^{\circ} \mathrm{F}=\left({ }^{\circ} \mathrm{C} \times 1.8\right)+32^{\circ}$	$\mathrm{K}={ }^{\circ} \mathrm{C}+273$

Equations

Density $=\frac{\text { mass }}{\text { volume }}$
$\mathrm{C}=\lambda \times v=2.997910^{8} \mathrm{~m} / \mathrm{s}$
$E=h \nu \quad h=6.626 \times 10^{-34} \mathrm{~J} S$

Boyle's Law: $P_{1} V_{1}=p_{2} V_{2}$
Charles' Law: $\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$
Gay-Lussac's Law: $\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}$
Combined gas Law: $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$

Ideal Gas Law: $\mathrm{pV}=\mathrm{nRT}$

$$
\mathrm{R}=0.082 \frac{\mathrm{~L} \text { atm }}{\mathrm{mole} \mathrm{~K}}=63.26 \frac{\mathrm{~L} \text { torr }}{\mathrm{mole} \mathrm{~K}}
$$

Dalton's Law of Partial Pressures: $\mathrm{p}_{\mathrm{T}}=\sum\left(\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}+\ldots\right)$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14} \quad \mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad 10^{-\mathrm{pH}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

