Coastline College Dupon

Practice Final Exam

(25 pts) For review on Dec 7, 2016

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

1. (a) (10 pts) Normal air contains about 0.28 g of oxygen per liter. An average human inhales about 0.50 L of air per breath and takes about 20 breaths per minute. How many grams of oxygen does a human inhale per hour?

(b) (10 pts) Find the density of the metal used if a 42.55 g sample added to a graduated cylinder of water raises the level of water by 4.77 mL? (*Make sure that your answer has the correct # of significant figures*)

Element	Atomic Symbol	Z	Α	# protons	# neutrons	# electrons
	F ⁻					
		83	209			83
Cobalt-60						
				80	119	80
	Sr ²⁺				50	

2. (a) Complete the following table:

(b) complete the table below with the missing formula of name.					
Ionic or Covalent?	Formula	Name			
	P ₄ O ₈				
		Strontium bromide			
		Carbon tetraiodide			
	$Ca_3(PO_4)_2$				

(b) Complete the table below with the missing formula or name:

 $(NH_4)_2CO_3$

3. (a) Hydrazine, N_2H_4 , a substance used as rocket fuel, reacts with oxygen as follows:

$$N_2H_4(l) + O_2(g) \rightarrow NO_2(g) + H_2O(g)$$

How many grams of oxygen are needed to react with 165 g of hydrazine?

(b) The "French paradox" is a phenomenon noted where, despite a high fat diet, there is a relatively low mortality rate from coronary heart disease in France. Researchers have implicated *resveratrol*, a compound found in grapes as having a cardioprotective effect. Chemical analysis of red Bordeaux grapes showed the analytical results as follows:

Based on the elemental data, suggest an empirical formula for resveratrol.

4. (a) (10 pts) 15 mL of a 0.07M solution of $Pb(NO_3)_2$ is mixed with 9 mL of a 0.15 M solution of Na_2SO_4 . What is the mass of $PbSO_4$ that would be expected to precipitate?

 $Pb(NO_3)_{2(aq)} + Na_2SO_{4(aq)} \longrightarrow PbSO_{4(s)} + 2 Na^{+}_{(aq)} + 2 NO_{3}^{-}_{(aq)}$

(b) (10 pts) Nitroglycerin ($C_3H_5N_3O_9$) is a powerful explosive that decomposes as follows: 4 $C_3H_5N_3O_9$ -----> 6 N_2 + 12 CO_2 + 10 H_2O + O_2

If 200 g of nitroglycerin react and 6.55 g of oxygen are produced, what is the yield?

5. (a) Write electron configurations for the following atomic species:
(i) Se²⁻
(ii) Sc
(iii) Al
(iv) Ca²⁺

(v) Mn²⁺

(b) Arrange the atomic species listed in order of <u>increasing size</u>:
(i) Na Al Cl
(ii) Pb Si Sn
(iii) N N³⁻ C
(c) Arrange the atoms listed in order of decreasing electron affinity:
(i) K Br Ga
(ii) As Sn S

6.(a) Sketch Lewis dot structures for the following covalent molecules: (i) <u>B</u>Br₃ (ii) <u>C</u>HCl₃

(iii) <u>C</u>H₂O (iv) N<u>C</u>Cl

 $(v) \underline{S}(CH_2CH_3)_2$

(b) For each of the molecules drawn in part (a), identify the geometry at the underlined atom.

7. (a) Microwaves emit electromagnetic radiation with a wavelength of 12.9 cm. What is the energy associated with microwaves?

(b) How much heat energy is released when 150 g of iron metal reacts with elemental chlorine gas:

 $2Fe(s) + 3Cl_2(g) ----> 2FeCl_3(s)$ $\Delta H^\circ = -799.0 \text{ kJ/mol}$

8. (a) Hyperbaric oxygen therapy is the use of oxygen gas at level higher than normal atmospheric pressure, which is effective in treating carbon monoxide poisoning. If the chamber has a volume of 200 L, how many grams of oxygen are needed to pressurize the chamber to 3 atm at a temperature of $27^{\circ}C$?

(b) A sample of ammonia gas at 40°C exerts a pressure of 5.3 atm – what is the pressure if the temperature is raised to 100°C?

9. (a) Find the pH of the following solutions: (i) freshly squeezed lemon juice: $[H_3O^+] = 3.47 \times 10^{-4} \text{ M}$

(b) bleach solution: $[H_3O^+] = 9.96 \times 10^{-12} M$

10. (a) Balance the following chemical equations:

- (i) $_PbS + _O_2 \xrightarrow{-->} PbO + _SO_2$
- (ii) __Na₃PO₄ + __MgCl₂ ----> __Mg₃(PO₄)₂ + __NaCl
- (iii) $_S_2Cl_2 + _NH_3 ---> _N_2S_4 + _NH_4Cl + _S_8$
- (b) For each of the equations in part (a), identify the type of reaction.

Conversion Factors

1.0 kilogram	2.2 pounds	1000 grams	
1.0 kilometers	0.6214 miles	1000 meters	
1 meter	39.37 inches	1000 millimeters	
1 liter	1.057 quarts	0.264 gallons	
1 cm ³	1 milliliter	0.0338 fluid ounces	
°C = (°F – 32) x 5/9	°F =(°C x 1.8) +32°	K = °C + 273	

Equations

Density = $\frac{\text{mass}}{\text{volume}}$ C = $\lambda x v = 2.9979 \ 10^8 \text{ m/s}$ Boyle's Law: P₁V₁ = p₂V₂ Gay-Lussac's Law: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ Charles' Law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ Combined gas Law: $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

Ideal Gas Law:
$$pV = nRT$$
 $R = 0.082 \frac{L atm}{mole K} = 63.26 \frac{L torr}{mole K}$

Dalton's Law of Partial Pressures: $p_T = \sum (p_1 + p_2 + p_3 + ...)$ $[H_3O^+][OH^-] = K_w = 1 \times 10^{-14}$ $pH = -log_{10}[H_3O^+]$ $10^{-pH} = [H_3O^+]$