Homework Set 1

(Distributed 8/29/16; Due on 9/7/16)
Read Chapters 1 \& 2 (sections 2.1-2.5) in Zumdahl \& DeCoste and complete the listed questions from the text: Chapter 1: 3; Chapter 2: 7, 11, 25, 33, 40, 44, 47; as well as the following problems:
A. Convert each of the indicated quantities to the new units:

Volume of a single teardrop 0.00721 mL		microliters	
Mass of one sugar crystal 0.000625 g	>	-6.25 $\times 10^{5}$	ng
Height of Irvine's 200 Spectrum Center	km	9840	

B. How many significant figures are there in each of the following quantities?
i. 0.00104 g 3 sig figs
ii. 12010 m 4 sig figs
iii. 0.09206
4 sig figs
C. Write each of the quantities in part B in standard scientific notation.
$1.04 \times 10^{-3} \mathrm{~g}$
$1.201 \times 10^{5} \mathrm{~m}$
9.206×10^{-2}
D. Complete the following calculations and express each answer with the correct number of significant figures and units:

1. $205.36 \mathrm{~mL}+72.5 \mathrm{~mL}=\ldots 277.9 \mathrm{~mL}$
ii. $3.55 \mathrm{~cm} \times 12.7 \mathrm{~cm} \times 0.15 \mathrm{~cm}=$ \qquad $6.8 \mathrm{~cm}^{3}$
iii. $24.01 \mathrm{~cm}-6.1 \mathrm{~cm}=$ \qquad 17.9 cm

Problems from Zumdahl/DeCoste:

Chapter 1

3. Some possibilities might include the refined petroleum products that fuel your car; burning natural gas or oil heats our homes and the many readily available pharmaceuticals like aspirin or ibuprofen.

Chapter 2:

7 a. 5.012×10^{-1}
b. 5.012×10^{6}
c. 5.012×10^{-6}
d. 5.012×10^{0}
e. 5.012×10^{3}
f. 5.012×10^{-3}
11. a. 9.782×10^{4}
b. 4.214×10^{4}
c. 8.214×10^{-5}
d. 3.914×10^{-4}
e. 9.271×10^{2}
f. 4.781×10^{-1}
25. a. kilometers
b. meters
c. centimeters
d. micrometers or millimeters
33. (a) 3
(b) 2
(c) 2
(d) 4
40. a. 8.8×10^{-4}
b. 9.375×10^{4}
c. 8.97×10^{-1}
d. 1.00×10^{3}
44. b, c and d have one significant figure; a has three.
47.a. 52.36
b. 10.90
c. 5.25
d. 6.5

