Homework Set 5 Solutions

(Distributed 10/5/16; Due on 10/12/16)

Read Chapter 8 in Zumdahl and complete the listed questions from the text: (8E and 7E) Chapter 8: 29, 33, 38, 42, 46, 55, 58, 70; as well as the following problems:

A. Calculate the molar mass for each of the molecules below:

(i) $Al_3(PO_4)_2$

(ii) C₁₂H₂₂O₁₁ (sucrose)

271 g/mole

342 g/molr

(iii) Ca(HCO₃)₂ 162 g/mole (iv) C₆H₁₄N₂O₂ (lysine) 146 g/mole

B. Complete the table:

b. Complete the table.				
Substance	Mass, grams	Molecular or	# moles	# molecules or
		formula mass		formula units
MgCl₂	21.7	95.2	0.228	1.37 X 10 ²³
K₂Se	881.9	157.2	5.61	3.38 x 10 ²⁴
Ba ₃ (PO ₄) ₂	19.26	601.9	0.032	1.93 x 10 ²²
C ₃ H ₇ O ₂ N	0.074	89	8.3 x 10 ⁻⁴	5 X 10 ²⁰
C ₇ H ₆ (NO ₂) ₂	254,860	182	1400.3	8.43 x 10 ²⁶

C. An organic compound used in food flavoring is 40.67% carbon, 5.08% hydrogen and 54.25% oxygen. What is the empirical formula for this compound? If its molecular mass is found to be 118 g/mole, what is its molecular formula?

40.67 g C x 1 mole/12 g = 3.39 moles 1 C 5.08 g H x 1 mole/1 g = 5.08 moles 1.5 H

54.25 g O x 1 mole/16 g = 3.39 moles 1 O empirical formula C2H3O2 empirical formula weight = 62 so 124 = 62 x 2 so molecular formula = C4H6O4

D. Nitrous oxide, or "laughing gas", is prepared by the thermal decomposition of ammonium nitrate:

$$NH_4NO_3$$
 -----> N_2O + 2 H_2O **NOW BALANCED**

Balance the equation and predict how many moles of nitric oxide and moles of water will be prepared from 1 kg of ammonium nitrate

1 kg = $1000 \text{ g x } 1 \text{ mole/} 80 \text{ g} = 12.5 \text{ moles } NH_4NO_3$ 12.5 moles of NH4NO3 would be expected to produce 12.5 moles of N₂O and 25 moles of H₂O.

Problems from Zumdahl:

```
Chapter 8:
```

- 29. (a) BaCl₂: 208.2 g (b) Al(NO₃)₃: 213 g (c) FeCl₂: 126.75 g
- (e) $Ca(C_2H_3O_2)_2$: 158.17 g (d) SO₂: 64 g
- 33. (a) $41.5 \text{ g} \times 1 \text{ mole/} 95.2 \text{ g} = 0.436 \text{ moles}$
- (b) 135 mg = 0.135 g x 1 mole/29.9 g = 0.00452 moles
- (c) 1.21 kg = 1210 g x 1 mole/52 g = 23.2 moles
- (d) 62.5 g x 1 mole/98 g = 0.637 moles
- (e) 42.7 g x 1 mole/78 g = 0.547 moles
- (f) 135 g x 1 mole/34 g = 3.97 moles
- 38 (a) 77.6 g
- (b) 177 g
- (c) $6.09 \times 10^{-3} g$

- (d) 0.220 g
- (e) 1.26 x 10^3 g
- (f) $3.78 \times 10^{-2} g$

- 42 (a) 0.0141 moles S
- (b) 0.0159 moles S
- (c) 0.0258 moles S
- (d) 0.0254 moles S
- 46. (a)80.34% Zn 19.66% O
- (b) 58.91 % Na 41.09% S
- (c) 41.68% Mg 54.86% O 3.46% H
- (d) 5.93% H 94.06% O

(e) 95.2% Cu 4.8% H

(f) 83% K 17% O

- 55 (a) NaO
- (b) $C_4H_3O_2$
- $(c) C_{12}H_{12}N_2O_3$

- (d) C_2H_3CI
- 58. $11.64 \text{ g N} \times 1 \text{ mole}/14 \text{ g} = 0.83 \text{ moles N}$

88.36 g Cl x 1 mole/35.5 g = 2.49 moles Cl = 2.49/0.83 = 3 NCl₃

70. Li₃N