Homework Set 6 Solutions

(Distributed 10/12/15; Due on 10/19/16)
Read Chapters 9\&10 in Zumdahl and complete the listed questions from the text: Chapter 9: 19, 30, 36, 40, 42, 49; Chapter 10: 23, 42, 44; as well as the following problems:
A. In the production of superconductors, the reaction shown is being studied:

$$
\mathrm{Tl}_{2} \mathrm{O}_{3}+2 \mathrm{BaO}+3 \mathrm{CaO}+4 \mathrm{CuO}-------------->\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{3} \mathrm{Cu}_{4} \mathrm{O}_{12}
$$

What mass of the product can be made using 5.0 g of CaO and the necessary amounts of the other reagents?
$5.0 \mathrm{~g} \times 1 \mathrm{~mole} / 56 \mathrm{~g}=\mathbf{0 . 0 8 9}$ moles $\mathrm{CaO} \times 1 \mathrm{~mole} \mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{3} \mathrm{Cu}_{4} \mathrm{O}_{12} / 3 \mathrm{moles} \mathrm{CaO}=\mathbf{0 . 0 3 0}$ moles $\times 1082.52 \mathrm{~g} / \mathrm{mole}=32.2 \mathrm{~g}$
B. The Sabatier reaction uses hydrogen gas to generate water on Space stations:

$$
\mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})------------->\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CH} 4(\mathrm{~g})
$$

How many grams of water can be made when 2.0 Liters of hydrogen (density $=0.070$ g / L) is used?
$2.0 \mathrm{~L} \times 0.070 \mathrm{~g} / \mathrm{L}=0.14 \mathrm{~g} \mathrm{H} 2 \times 1$ mole $\mathrm{H} 2 \mathrm{O} / 4$ moles $\mathrm{H} 2=0.035$ moles $\mathrm{H} 2 \mathrm{O} \times 18 \mathrm{~g} / \mathrm{mole}=$ 0.63 grams H2O
C. Antacids, such as CaCO_{3}, are used to neutralize excess stomach acid, HCl :

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl}----------->\mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

How many grams of HCl are neutralized by 400 mg of CaCO_{3} ? How many grams of CO 2 is produced?
$400 \mathrm{mg} \times 1 \mathrm{~g} / 1000 \mathrm{mg}=0.4 \mathrm{~g} \times 1 \mathrm{~mole} / 100 \mathrm{~g}=0.004 \mathrm{moles} \mathrm{CaCO}_{3} \times 2 \mathrm{moles} \mathrm{HCl} / 1 \mathrm{~mole}$ CaCO3 $=0.008$ moles $\mathrm{HCl}=0.29 \mathrm{~g}$
0.004 moles $\mathrm{CaCO}_{3} \times 1$ mole CO2/1 $\mathrm{mole}^{2} \mathrm{CaCO}_{3}=0.004 \mathrm{moles} \mathrm{CO}_{2} \times 44 \mathrm{~g} / \mathrm{mol}=0.176 \mathrm{~g}$
D. Butane combusts with oxygen to generate carbon dioxide and water. It is a volatile fuel often used in camping stoves:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2}--------->8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}+5756 \text { kJoules }
$$

If 7.0 g of butane in gasoline combusts, how much heat energy is released?
$7.0 \mathrm{~g} x 1 \mathrm{~mole} / 58 \mathrm{~g}=0.121$ moles
5756 kJ/2 moles C4H10 x 0.121 moles $=347.4 \mathrm{~kJ}$

Problems from Zumdahl:

Chapter 9:

19. (a) 0.148 moles
(b) 8.97×10^{-6} moles
(c) 32.7 moles
(d) $5.55 \times 10^{-6} \mathrm{moles}$
(e) 139 moles
20. $0.959 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$
21. 8.62 kg Hg
22. $1 \mathrm{lb} \mathrm{CO} 2 \times 1 \mathrm{~kg} / 2.2 \mathrm{lb} \times 1000 \mathrm{~g} / \mathrm{kg}=454.5 \mathrm{~g} \mathrm{CO} 2$
$454.4 \mathrm{~g} \times 1 \mathrm{~mole} / 44 \mathrm{~g} \times 2 \mathrm{~mol} \mathrm{C} 8 \mathrm{H} 18 / 16 \mathrm{~mol} \mathrm{CO} 2=1.29 \mathrm{moles} \mathrm{C} 8 \mathrm{H} 18$ 1.29 moles $\mathrm{C} 8 \mathrm{H} 18 \times 114 \mathrm{~g} / \mathrm{mole} \times 1 \mathrm{~mL} / 0.75 \mathrm{~g}=196.3 \mathrm{~mL}$ $196.3 \mathrm{~mL} \times 1 \mathrm{~L} / 1000 \mathrm{~mL} \times 1 \mathrm{Gal} / 3.78 \mathrm{~L}=0.052 \mathrm{Gal} /$ mile or 19.3 miles per Gallon
23. Calculate the number of moles of each reagent and compare to the molar ratio determined by the coefficient of the balanced equation.

49 (a) UO_{2} is limiting; $1.16 \mathrm{~g} \mathrm{UF}_{4}$ and $0.133 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
(b) NaNO_{3} is limiting; $0.836 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} 0.741 \mathrm{~g} \mathrm{HNO}_{3}$
(c) HCl is limiting; $1.87 \mathrm{~g} \mathrm{ZnCl}_{2} 0.0276 \mathrm{~g} \mathrm{H}_{2}$
(d) CH 3 OH is the limiting reagent $1.08 \mathrm{~g} \mathrm{~B}\left(\mathrm{OCH}_{3}\right)_{3} 0.562 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Chapter 10:

23. 25.2 kJ
24. (1) -9.23 kJ
(b) -148 kJ
(c) $+296 \mathrm{~kJ} / \mathrm{mole}$
25. (a) -29.5 kJ
(b) $\Delta \mathrm{H}=-1360 \mathrm{~kJ}$
(c) $453 \mathrm{~kJ} / \mathrm{mole} \mathrm{H}_{2} \mathrm{O}$
