Homework Set 7

(Distributed 10/26/16; Due on 11/2/16)
Read Chapter 13 in Zumdahl and complete the listed questions from the text: 18, 24, $30,43,50,60,71,86$; as well as the following problems:
A. A diver takes a balloon with a volume of 5.0 L from the water's surface where the pressure is 1.0 atm to a depth of 20 meters, where the pressure is 3.0 atm . What happens to the volume of the balloon?

$$
P_{1} V_{1}=p_{2} V_{2} \quad(1 \mathrm{~atm})(5.0 \mathrm{~L})=(3.0 \mathrm{~atm})(? \mathrm{~L}) \quad ?=1.67 \mathrm{~L}
$$

The balloon shrinks

B. A helium-filled balloon is inflated to a volume of 2.5 L at a room temperature of $25^{\circ} \mathrm{C}$ is taken outside on a very cold evening at $-25^{\circ} \mathrm{C}$. What is the new volume assuming constant atmospheric pressure?
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \frac{2.5 \mathrm{~L}}{298 \mathrm{~K}}=\frac{\mathrm{V} 2}{248 \mathrm{~K}} \quad \mathrm{~V} 2=2.08 \mathrm{~L}$
C. Pressurized carbon dioxide inflators are used to inflate bicycle tires in case of a flat tire. These inflators contain 16.0 g of CO 2 . At $25^{\circ} \mathrm{C}$, how much pressure is provided by the inflator to a tire with a volume of 3.45 L ?
$16 \mathrm{~g} \mathrm{CO} 2 \times 1 \mathrm{~mole} / 44 \mathrm{~g}=0.364$ moles
$\mathrm{pV}=\mathrm{nRT} \quad \mathrm{p}=\frac{n R T}{V}=\frac{(0.364 \text { moles })(0.0821)(298 \mathrm{~K})}{3.45 \mathrm{~L}}=2.58 \mathrm{~atm}$
D. Heliox is a mixture of helium and oxygen gases used to fill tanks for scuba divers. I a 12.5 L tank contains 24.2 g helium and 4.32 g oxygen, find the partial pressure of each gas and the total pressure of the mixture.
$24.2 \mathrm{~g} \times 1 \mathrm{~mole} / 4 \mathrm{~g}=6.05$ moles $\mathrm{He} \quad 4.32 \mathrm{~g} \times 1 \mathrm{~mole} / 32 \mathrm{~g}=0.135 \mathrm{moles} \mathrm{O} 2$
$\mathrm{nT}=6.05+0.135=6.185$ moles $\quad \mathrm{pT}=\frac{n \boldsymbol{R} T}{V}=\frac{(6.185 \text { moles })(\mathbf{0 . 0 8 2 1) (2 9 8 ~ K)}}{12.5 \mathrm{~L}}=12.1 \mathrm{~atm}$
$\mathrm{pHe}=6.05 / 6.185=0.978 \quad \mathrm{pO}=0.135 / 6.185=0.022$

Problems from Zumdahl:

Chapter 13

18. Boyle's Law: $V_{1} p_{1}=V_{2} p_{2}$ (a) 423 mL
(b) 158 mL
(c) 8.67 L
19. Boyle's Law: $\mathrm{V}_{1} \mathrm{p}_{1}=\mathrm{V}_{2} \mathrm{p}_{2} \quad \mathrm{p} 2=20 \mathrm{~atm}$
20. Charles' Law: $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad V_{2}=315 \mathrm{~mL}$
21. Avogadro's Law $\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}} \quad V_{2}=435 \mathrm{~L}$
22. $p V=n R T$ (a) $V=5.02 \mathrm{~L} \quad$ (b) $3.56 \mathrm{~atm}=2700 \mathrm{~mm} \mathrm{Hg} \quad$ (c) $T=334 \mathrm{~K}$
23. $\mathrm{p}_{\mathrm{He}}=5.07 \mathrm{~atm}>\mathrm{p}_{\mathrm{Ar}}=3.5 \mathrm{~atm}$
24. $\mathrm{p}_{\mathrm{T}}=772$ torr poxygen $=\mathrm{p}_{\mathrm{T}}-\mathrm{p}_{\text {water }}=772$ torr -26.7 torr $=745.3$ torr
25. $1.25 \mathrm{~g} \times 1 \mathrm{~mole} / 12 \mathrm{~g}=0.104$ moles C so 0.104 moles of O_{2} are required
$V=\frac{n R T}{p}=\frac{(0.104 \text { moles })\left(0.082 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mole} \mathrm{~K}}\right) 298 \mathrm{~K}}{1.02 \mathrm{~atm}}=2.5 \mathrm{~L}$
